МИНОБРНАУКИ РОССИИ

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина)

МЕХАНИКА, МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА

Методические указания к выполнению индивидуальных заданий по физике

Санкт-Петербург Издательство СПбГЭТУ «ЛЭТИ» 2014

Механика, молекулярная физика и термодинамика: метод. указания к выполнению индивидуальных заданий по курсу физики / сост.: И. А. Черемухина, С. С. Чурганова. СПб.: Изд-во СПбГЭТУ «ЛЭТИ», 2014. 40 с.

Содержат описание основных явлений и законов механики, молекулярной физики и термодинамики, а также набор задач для индивидуального решения.

Предназначены для студентов І курса открытого факультета СПбГЭТУ.

Утверждено редакционно-издательским советом университета в качестве методических указаний

Часть І. МЕХАНИКА

Настоящие методические указания содержат описание явлений и законов двух разделов механики – кинематики и динамики.

Кинематика – раздел физики, изучающий движение тел без рассмотрения причин, обуславливающих это движение.

Динамика – раздел физики, исследующий законы и причины движения тел под действием приложенных к ним сил.

1. ПОСТУПАТЕЛЬНОЕ ДВИЖЕНИЕ

1.1. Основные понятия. Законы Ньютона

Поступательным называется движение, при котором любая прямая, жестко связанная с телом, остается при его движении параллельной самой себе.

Кинематика данного движения определяется следующими величинами.

Paduyc-вектор \mathbf{r} точки — это вектор, проведенный из начала координат в данную точку:

$$\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$
,

где x, y, z — компоненты радиуса-вектора (координаты точки); \mathbf{i} , \mathbf{j} , \mathbf{k} — единичные векторы координатных осей, а модуль радиуса-вектора может быть найден как

$$r = \sqrt{x^2 + y^2 + z^2}$$
.

Вектор перемещения $\Delta \mathbf{r}$ точки за время t – это вектор, проведенный из начального положения точки, определяемого радиусом-вектором \mathbf{r}_1 , в ее конечное положение, определяемое радиусом-вектором \mathbf{r}_2 :

$$\Delta \mathbf{r} = \mathbf{r}_2 - \mathbf{r}_1.$$

 $\Pi ymb\ S$ — сумма длин всех участков траектории, пройденных точкой за рассматриваемый промежуток времени Δt .

 $\it Cкорость \ v \$ точки — векторная величина, равная первой производной радиуса-вектора по времени, а ее модуль $\it v$ равен первой производной пути по времени:

$$\mathbf{v} = \lim_{\Delta t \to 0} \frac{\Delta \mathbf{r}}{\Delta t} = \frac{d\mathbf{r}}{dt}, \quad v = \lim_{\Delta t \to 0} \frac{\Delta S}{\Delta t} = \frac{dS}{dt}.$$

Скорость как векторная величина, может быть представлена в виде составляющих, т. е. ее проекций на оси координат:

$$\mathbf{v} = \mathbf{v}_{x}\mathbf{i} + \mathbf{v}_{y}\mathbf{j} + \mathbf{v}_{z}\mathbf{k}.$$

Модуль скорости может быть найден как

$$v = \sqrt{{v_x}^2 + {v_y}^2 + {v_z}^2}, \quad v_x = \frac{dx}{dt}, \quad v_y = \frac{dy}{dt}, \quad v_z = \frac{dz}{dt},$$

где v_x , v_y , v_z – компоненты скорости на оси координат, м/с.

Соответственно, путь, пройденный точкой за промежуток времени от t_1 до t_2 , равен определенному интегралу от функции v(t):

$$S = \int_{t_1}^{t_2} v(t)dt.$$

Vскорение a точки — это векторная величина, характеризующая изменение скорости точки со временем и равная первой производной от скорости точки по времени или второй производной радиуса-вектора по времени, а модуль ускорения a равен первой производной скорости v по времени или второй производной пути по времени:

$$a = \lim_{\Delta t \to 0} \frac{\Delta \mathbf{v}}{\Delta t} = \frac{d\mathbf{v}}{dt} = \frac{d^2 \mathbf{r}}{dt^2}, \qquad a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt} = \frac{d^2 S}{dt^2}.$$

Вектор ускорения через проекции на оси координат и его модуль:

$$\mathbf{a} = a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k}$$
, $a = \sqrt{a_x^2 + a_y^2 + a_z^2}$,

где проекции ускорения равны

$$a_x = \frac{dv_x}{dt} = \frac{d^2x}{dt^2}, \quad a_y = \frac{dv_y}{dt} = \frac{d^2y}{dt^2}, \quad a_z = \frac{dv_z}{dt} = \frac{d^2z}{dt^2}.$$

Вектор ускорения лежит в плоскости траектории и направлен в сторону ее вогнутости. В этой плоскости вектор ускорения можно разложить на две взаимно перпендикулярные составляющие a_n и a_{τ} :

$$a=a_n+a_{\tau}$$
.

Составляющая a_{τ} называется *тангенциальным* (касательным) ускорением точки. Она направлена по касательной к траектории и характеризует быстроту изменения модуля скорости:

$$a_{\tau} = d\mathbf{v} / dt$$
.

Составляющая a_n называется *нормальным* (центростремительным) ускорением точки. Она направлена по нормали к траектории в рассматриваемой точке и характеризует быстроту изменения направления вектора скорости:

$$a_n = \mathbf{v}^2 / R$$
,

где R — радиус кривизны траектории, м.

Модуль полного ускорения находится как

$$a = \sqrt{a_n^2 + a_\tau^2} \ .$$

Равномерным называется движение тела, при котором его скорость остается постоянной, а ускорение равно нулю. Уравнение движения:

$$S = \nu t$$

Неравномерным называется движение тела, при котором его скорость изменяется с течением времени, а ускорение не равно нулю. Уравнения движения:

$$v = v_0 + at$$
, $S = v_0 t + \frac{at^2}{2}$.

В динамике поступательного движения к кинематическим величинам добавляются динамические характеристики: сила ${\bf F}$ и масса m.

Cuna **F** — векторная физическая величина, являющаяся мерой механического действия на данное тело со стороны других тел. Сила полностью определена, если заданы ее модуль, направление в пространстве и точка приложения. Одновременное действие на тело нескольких сил эквивалентно действию одной силы, называемой равнодействующей и равной их векторной сумме:

$$\mathbf{F}_{\Sigma} = \mathbf{F}_1 + \mathbf{F}_2 + \dots + \mathbf{F}_n = \sum_{i=1}^n \mathbf{F}_i,$$

а ее модуль находится как

$$\begin{split} F_{\sum x} &= F_{1x} + F_{2x} + \ldots + F_{nx} = \sum_{i=1}^n F_{ix} \,, \quad F_{\sum y} = F_{1y} + F_{2y} + \ldots + F_{ny} = \sum_{i=1}^n F_{iy} \,, \\ F_{\sum z} &= F_{1z} + F_{2z} + \ldots + F_{nz} = \sum_{i=1}^n F_{iz} \,, \qquad F_{\sum} = \sqrt{F_{\sum x}^2 + F_{\sum y}^2 + F_{\sum z}^2} \,. \end{split}$$

 $\mathit{Maccoй}\ \mathit{m}$ тела называется положительная скалярная величина, являющаяся мерой инертности тела.

Uмиульсом **р** тела, или *количеством движения* называется векторная величина, равная произведению массы m тела на его скорость **v**:

$$\mathbf{p} = m\mathbf{v}$$
.

Первый закон Ньютона (закон инерции): всякое тело находится в состоянии покоя или равномерного и прямолинейного движения, пока воздействие со стороны других тел не выведет его из этого состояния.

Второй закон Ньютона (основной закон динамики) устанавливает связь между динамическими и кинематическими величинами. Он гласит, что *скорость изменения импульса тела равна действующей на тело силе:*

$$\mathbf{F} = d\mathbf{p} / dt$$
.

Векторная величина $\mathbf{F}dt$ называется элементарным *импульсом силы* \mathbf{F} за малое время dt ее действия. Импульс силы за конечный промежуток времени от t_1 до t_2 равен $\int\limits_{t_1}^{t_2} \mathbf{F}dt$. Тогда изменение импульса равно действующей на не-

го силе за тот же промежуток времени от t_1 до t_2 :

$$\Delta \mathbf{p} = \mathbf{p}_2 - \mathbf{p}_1 = \int_{t_1}^{t_2} \mathbf{F} dt.$$

Поскольку в классической механике масса тела является постоянной величиной, то второй закон Ньютона можно сформулировать так: *произведение массы тела на его ускорение равно действующей на тело силе* и записать в виде:

$$\mathbf{F} = m\mathbf{a}$$
.

Третий закон Ньютона имеет вид:

$$\mathbf{F}_{12} = -\mathbf{F}_{21}$$
,

т. е. силы, с которыми взаимодействуют два тела, равны по модулю и противоположны по направлению. В формуле \mathbf{F}_{12} — сила, действующая на второе тело со стороны первого; \mathbf{F}_{21} — сила, действующая на первое тело со стороны второго.

- 1. Закон движения двух материальных точек описывается уравнениями $x_1 = A_1 + B_1 t + C_1 t^2$; $B_1 = 4$ м/с, $C_1 = -4$ м/с; $x_2 = A_2 + B_2 t + C_2 t^2$; $B_2 = 1$ м/с, $C_2 = 0.5$ м/с. Определить момент времени, когда скорости точек будут одинаковы.
- 2. Точка движется прямолинейно вдоль оси x и ее координата изменяется по закону $x(t) = A(t-B)^2$, где A = 4 м/с 2 , B = 2 с. Найти скорость точки через 4 с после начала движения.
- 3. Тело, двигаясь прямолинейно, за время t = 10 с проходит путь S = 100 м, причем за это время его скорость увеличивается в 5 раз. Определить ускорение точки, считая его постоянным.
- 4. Тело брошено с высоты h=28 м вертикально вверх с начальной скоростью $v_0=8$ м/с. Найти скорость падения тела на землю.

- 5. На гладком столе лежит брусок массой m=4 кг. К бруску привязан шнур, ко второму концу которого приложена сила F=10 H, направленная параллельно поверхности стола. Найти ускорение a бруска.
- 6. На столе стоит тележка массой $m_1 = 4$ кг. К тележке привязан один конец шнура, перекинутого через блок. С каким ускорением a будет двигаться тележка, если к другому концу шнура привязать гирю массой $m_2 = 1$ кг?
- 7. К пружинным весам подвешен блок. Через блок перекинут шнур, к концам которого привязали грузы массой $m_1 = 1,5$ кг и $m_2 = 3$ кг. Каково будет показание весов во время движения грузов? Массой блока и шнура пренебречь.
- 8. Два бруска массой $m_1 = 1$ кг и $m_2 = 4$ кг, соединенные шнуром, лежат на столе. С каким ускорением a будут двигаться бруски, если к одному из них приложить силу F = 10 H, направленную горизонтально? Какова будет сила натяжения T шнура, соединяющего бруски, если силу 10 H приложить к первому бруску? Трением пренебречь.
- 9. Определить силу давления пассажиров на пол кабины лифта, если вес пассажиров 150 кг, а лифт поднимается с ускорением a = 0.66 м/с²? Чему равна эта сила давления при опускании кабины лифта с тем же ускорением?
- 10. Два тела массами 2 кг и 3 кг, связанные нерастяжимой нитью, поднимают, действуя на первое из них силой 60 H, направленной вертикально вверх. Найти силу натяжения нити, связывающей тела.

1.2. Закон сохранения импульса

Закон сохранения импульса гласит: *суммарный импульс* замкнутой системы материальных точек остается постоянным: $\mathbf{p} = \text{const.}$

Точка C, положение которой определяется радиусом-вектором

$$\mathbf{r}_C = \frac{1}{m} \sum_{i=1}^n m_i \mathbf{r}_i = \frac{m_1 \mathbf{r}_1 + m_2 \mathbf{r}_2 + ... + m_n \mathbf{r}_n}{m_1 + m_2 + ... m_n},$$

называется *центром масс* системы материальных точек. В формуле \mathbf{r}_i — радиус-вектор *i*-й материальной точки, м; m_i — масса *i*-й материальной точки, кг.

Декартовы координаты центра масс найдем как:

$$x_C = \frac{1}{m} \sum_{i=1}^n m_i x_i = \frac{m_1 x_1 + m_2 x_2 + ... + m_n x_n}{m_1 + m_2 + ... + m_n},$$

$$y_C = \frac{1}{m} \sum_{i=1}^n m_i y_i = \frac{m_1 y_1 + m_2 y_2 + \dots + m_n y_n}{m_1 + m_2 + \dots + m_n},$$

$$z_C = \frac{1}{m} \sum_{i=1}^n m_i z_i = \frac{m_1 z_1 + m_2 z_2 + \dots + m_n z_n}{m_1 + m_2 + \dots + m_n},$$

где x_i, y_i, z_i – декартовы координаты i-й материальной точки, м.

Центр масс твердого тела движется так, как двигалась бы материальная точка с массой, равной массе тела, под действием всех приложенных к телу сил.

- 1. Два шара движутся навстречу друг другу. Массы шаров составляют 10 кг и 4 кг, скорости 4 м/с и 12 м/с, соответственно. Найти скорость шаров после столкновения. Удар считать прямым неупругим.
- 2. Человек массой 75 кг прыгнул с движущейся тележки массой 100 кг в сторону, противоположную движению тележки, так, что его скорость относительно земли стала равной нулю. Чему равна скорость тележки после прыжка, если до прыжка она была 4 м/с?
- 3. Шар массой 10 кг, движущийся со скоростью 4 м/с, догоняет другой шар массой 4 кг, движущийся в том же направлении со скоростью 12 м/с. Найти скорость шаров после удара. Удар считать прямым неупругим.
- 4. В лодке массой 240 кг стоит человек массой 60 кг. Лодка плывет со скоростью 2 м/с. Человек прыгает вперед по движению лодки в горизонтальном направлении со скоростью 4 м/с относительно лодки. Найти скорость движения лодки после прыжка человека.
- 5. Мальчик догнал тележку, движущуюся со скоростью 3 м/с, и вскочил на нее. Чему равна скорость тележки после того, как на нее вскочил мальчик, если скорость прыжка мальчика 4 м/с, его масса 50 кг, масса тележки 80 кг?
- 6. С тележки массой 100 кг, движущейся со скоростью 4 м/с, по направлению движения прыгнул человек массой 75 кг так, что его скорость относительно земли стала равной нулю. Какой стала скорость тележки после прыжка?
- 7. Навстречу мальчику, масса которого 50 кг, со скоростью 3 м/с движется тележка массой 80 кг. Чему будет равна скорость тележки, если мальчик вскочит на нее? Скорость прыжка мальчика 4 м/с.
- 8. Два шара движутся навстречу друг другу. Шар массой 20 кг движется со скоростью 5 м/с, шар массой 8 кг движется со скоростью 12 м/с. Найти скорость шаров после удара. Удар считать прямым неупругим.

- 9. Пушка массой $m_1 = 500$ кг, стоящая на гладкой горизонтальной площадке, стреляет под углом $\alpha = 30^{\circ}$ к горизонту. Масса снаряда $m_2 = 20$ кг, его начальная скорость v = 200 м/с. Какую скорость приобретет пушка при выстреле?
- 10. Снаряд массой $m_1 = 50$ кг, летящий со скоростью v = 800 м/с под углом $\alpha = 30^{\circ}$ к вертикали, попадает в платформу с песком и застревает в нем. Найти скорость платформы после попадания снаряда, если ее масса $m_2 = 16$ т.

1.3. Работа. Энергия. Закон сохранения механической энергии

Механическая энергия бывает двух видов: кинетическая и потенциальная. *Кинетическая энергия* (или энергия движения) определяется массами и скоростями тел:

$$E_{ ext{ iny K}} = rac{m v^2}{2}$$
 или $E_{ ext{ iny K}} = rac{p^2}{2m}$,

где m — масса тела, кг; v — скорость тела, м/с; p — импульс тела, кг·м/с.

Потенциальная энергия тела в поле силы тяжести определяется как

$$E_{\Pi} = mgh$$
,

где h – высота тела над землей, м.

Работой A силы **F** по перемещению тела на расстояние S называется скалярное произведение векторов **F** и **S**:

$$A = FS = FS \cos \alpha$$
,

где $\cos \alpha$ – угол между векторами **F** и **S**.

Сила называется консервативной, если работа этой силы не зависит от траектории движения тела и определяется только начальным и конечным положением тела. Кроме того, работа консервативной силы по замкнутой траектории равна нулю.

Работа результирующей всех сил, действующих на тело, идет на приращение его кинетической энергии:

$$A_{12} = E_{\kappa 2} - E_{\kappa 1}$$
.

В то же время работа равна убыли потенциальной энергии тела:

$$A_{12} = E_{\Pi 1} - E_{\Pi 2}$$
.

$$P = \frac{dA}{dt} = \mathbf{F}\mathbf{v} = F\upsilon\cos\alpha,$$

где $\cos \alpha$ — угол между векторами силы **F**, действующей на тело, и скорости **v** тела.

Закон сохранения механической энергии имеет вид:

$$E = E_{\kappa} + E_{\Pi} = \text{const}$$
,

т. е. полная механическая энергия системы материальных точек, между которыми действуют только консервативные силы, остается постоянной. Закон справедлив как для замкнутых, так и для незамкнутых консервативных систем.

- 1. Под действием постоянной силы F вагонетка прошла путь S=5 м и приобрела скорость v=2 м/с. Определить работу A силы, если масса m вагонетки равна 400 кг и коэффициент трения $\mu=0.01$.
- 2. Вычислить работу A, совершаемую при равноускоренном подъеме груза массой m=100 кг на высоту h=4 м за время t=2 с.
- 3. Вычислить работу A, совершаемую на пути S=12 м равномерно возрастающей силой F, если в начале пути сила равна 10 H, а в конце пути 46 H.
- 4. Под действием постоянной силы F=400 H, направленной вертикально вверх, груз массой m=20 кг был поднят на высоту h=15 м. Какой потенциальной энергией E_{Π} будет обладать поднятый груз? Какую работу A совершит сила F?
- 5. Тело массой m=1 кг, брошенное с вышки в горизонтальном направлении со скоростью $v_0=20\,$ м/с, через $t=3\,$ с упало на землю. Определить кинетическую энергию $E_{\rm K}$, которую имело тело в момент удара о землю. Сопротивлением воздуха пренебречь.
- 6. Камень брошен вверх под углом $\phi = 60^{\circ}$ к плоскости горизонта. Кинетическая энергия $E_{\rm K0}$ камня в начальный момент времени равна 20 Дж. Определить кинетическую $E_{\rm K}$ и потенциальную $E_{\rm II}$ энергии камня в высшей точке его траектории. Сопротивлением воздуха пренебречь.
- 7. Вертолет массой m=3 т висит в воздухе. Определить мощность P, развиваемую мотором вертолета в этом положении, при диаметре ротора d=18 м.
- 8. Стоящий на неподвижной тележке человек бросает горизонтально камень массой 8 кг со скоростью 5 м/с относительно Земли. Трение между тележкой и горизонтальной поверхностью, на которой она стоит, отсутствует. Масса тележки вместе со стоящим на ней человеком 160 кг. Какую работу совершил человек, бросая камень?
- 9. Какой кинетической энергией обладает тело массы m = 1кг, падающее без начальной скорости, спустя 5 с после падения?

10. Тело брошено вертикально вверх со скоростью v = 49 м/с. На какой высоте h его кинетическая и потенциальная энергии будут равны?

2. ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ

2.1. Основные понятия. Момент инерции. Теорема Штейнера

Положение твердого тела при заданной оси вращения определяется радиусом-вектором \mathbf{r} или углом поворота $\boldsymbol{\varphi}$ (иначе — угловым перемещением). Поворот материальной точки на некоторый угол может задаваться либо в виде отрезка ΔS , либо в виде изменения угла $\Delta \boldsymbol{\varphi}$. Кинематическими характеристиками вращательного движения являются также вектор угловой скорости $\boldsymbol{\omega}$ и вектор углового ускорения $\boldsymbol{\varepsilon}$, модули которых определяются как

$$\omega = \lim_{\Delta t \to 0} \frac{\Delta \varphi}{\Delta t} = \frac{d\varphi}{dt}, \qquad \varepsilon = \lim_{\Delta t \to 0} \frac{\Delta \omega}{\Delta t} = \frac{d\omega}{dt}.$$

Промежуток времени T, в течение которого материальная точка совершает один полный оборот по окружности, называется *периодом обращения* (периодом вращения). Число оборотов в единицу времени есть *частота* вращения n, связанная с периодом соотношением: T = 1/n.

Связь между линейными и угловыми величинами, характеризующими вращение тела:

- путь ΔS и угол поворота $\Delta \phi$ по окружности радиуса R -

$$\Delta S = \Delta \varphi R$$
;

– линейная и угловая скорости вращающегося тела –

$$v = \omega R$$
;

тангенциальное и угловое ускорения тела —

$$a_{\tau} = \varepsilon R$$
;

- нормальное и угловое ускорения тела -

$$a_n = v^2 / R = \omega^2 R = \varepsilon^2 t^2 R$$
.

При изучении динамики вращательного движения тела в дополнение к кинематическим вводятся динамические характеристики: момент инерции I, момент силы \mathbf{M} и момент импульса \mathbf{L} .

Моментом инерции дискретного твердого тела относительно некоторой оси вращения называется скалярная физическая величина, равная сумме про- изведений элементарных масс m_i тела на квадраты их расстояний r_i до оси:

$$I = \sum_{i=1}^{n} m_i r_i^2.$$

Момент инерции материальной точки

$$I = mr^2$$
.

Момент инерции — величина аддитивная. Это значит, что момент инерции относительно некоторой оси равен сумме моментов инерции частей тела относительно той же оси:

$$I = I_1 + I_2 + ... + I_n = \sum_{i=1}^{n} I_i$$
.

Если тело однородно, т. е. плотность ρ во всех его точках одинакова, то момент инерции определяется как

$$I=\int r^2 dm = r \int_V \rho^2 dV$$
,

где V – объем тела.

Моменты инерции некоторых тел правильной геометрической формы:

- 1. Однородный тонкий стержень массой m и длиной l:
- ось проходит перпендикулярно стержню через его центр тяжести:

$$I = \frac{ml^2}{12};$$

- ось проходит перпендикулярно стержню через его конец:

$$I=\frac{ml^2}{3}.$$

2. Тонкое кольцо (полый цилиндр) массой m и радиусом R:

$$I=mR^2$$
.

3. Круглый однородный диск (сплошной цилиндр) массой m и радиусом R:

$$I = \frac{ml^2}{2}.$$

4. Однородный шар массой m и радиусом R:

$$I = \frac{2}{5}mR^2.$$

Теорема Штейнера имеет вид:

$$I = I_C + mb^2$$

и гласит, что момент инерции I относительно произвольной оси равен сумме моментов инерции I_C относительно оси, параллельной данной и проходящей через центр масс тела, и произведению массы тела на квадрат расстояния b между осями.

- 1. Два шарика массой m=10 г каждый закреплены на концах тонкого невесомого стержня длиной L=20 см. Определить момент инерции I системы относительно оси, перпендикулярной стержню и проходящей через его центр масс.
- 2. Определить момент инерции I тонкого однородного стержня длиной L=30 см и массой m=100 г относительно оси, перпендикулярной стержню и проходящей через его конец.
- 3. Два шара массой m и 2m (m=10 г) закреплены на тонком невесомом стержне длиной L=40 см: шар массой m на середине стержня, шар массой 2m на конце. Определить момент инерции I системы относительно оси, проходящей перпендикулярно стержню через его свободный конец. Размерами шаров пренебречь.
- 4. На концах тонкого однородного стержня длиной L=1 м и массой 3m прикреплены маленькие шарики масс массами m и 2m. Определить момент инерции I такой системы относительно оси, проходящей перпендикулярно стержню на расстоянии 2L/3 от меньшего шара. Шарики рассматривать как материальные точки; m=0,1 кг.
- 5. На концах тонкого однородного стержня длиной L=1 м и массой 3m прикреплены маленькие шарики массами m и 2m. Определить момент инерции I такой системы относительно оси, проходящей перпендикулярно стержню на расстоянии L/4 от большего шара. Шарики рассматривать как материальные точки; m=0,1 кг.
- 6. Определить момент инерции I тонкого однородного стержня длиной L=30 см и массой m=100 г относительно оси, перпендикулярной стержню и проходящей через точку, отстоящую от конца стержня на 1/3 его длины.
- 7. Определить момент инерции I диска относительно оси, проходящей перпендикулярно плоскости диска через конец его диаметра. Масса диска m=1 кг, диаметр d=40 см.
- 8. Диаметр диска d = 20 см, масса m = 800 г. Определить момент инерции I диска относительно оси, проходящей через середину одного из радиусов перпендикулярно плоскости диска.

- 9. Найти момент инерции тонкого однородного кольца радиусом R=20 см и массой m=100 г относительно оси, проходящей через край кольца перпендикулярно его плоскости.
- 10. Определить момент инерции шара радиусом R=10 см и массой m=500 г относительно оси, проходящей через середину радиуса.

2.2. Закон сохранения момента импульса

Моментом импульса (или моментом количества движения) тела относительно точки O называется вектор \mathbf{L} , равный векторному произведению импульса \mathbf{p} тела на радиус-вектор \mathbf{r} , определяющий положение тела.

$$\mathbf{L} = [\mathbf{p} \times \mathbf{r}], \quad L = pr \sin \alpha = pl,$$

где α – угол между векторами **p** и **r**; $l = r \sin \alpha - \pi$ лечо импульса.

Через момент инерции момент импульса можно представить в виде:

$$L = I\omega$$
.

Закон сохранения момента импульса: момент импульса замкнутой системы материальных точек остается постоянным:

$$L = const.$$

Этот закон для тела при изменении его момента инерции:

$$I_1\omega_1=I_2\omega_2$$
,

где I_1 и I_2 — начальный и конечный моменты инерции, кг·м 2 ; ω_1 и ω_2 — начальная и конечная угловые скорости тела, рад/с.

Закон сохранения момента импульса для двух взаимодействующих тел:

$$I_1\omega_1 + I_2\omega_2 = I_1'\omega_1' + I_2'\omega_2',$$

где I_1 , I_2 , ω_1 и ω_2 — моменты инерции и угловые скорости тел до взаимодействия; I_1 , I_2 , ω_1 и ω_2 — те же величины после взаимодействия.

- 1. Платформа в виде диска радиусом R=1 м вращается по инерции с частотой $n_1=6$ мин $^{-1}$. На краю платформы стоит человек, масса которого m=80 кг. С какой частотой n_2 будет вращаться платформа, если человек перейдет в ее центр? Момент инерции I платформы равен 120 кг \cdot м 2 . Момент инерции человека рассчитывать как для материальной точки.
- 2. В центре скамьи Жуковского стоит человек и держит в руках стержень длиной l=2,4 м и массой m=8 кг, расположенный вертикально по оси вращения скамьи. Скамья с человеком вращается с частотой $n_1=1$ с $^{-1}$. С какой частотой n_2

будет вращаться скамья с человеком, если он повернет стержень в горизонтальное положение? Суммарный момент инерции I человека и скамьи равен 6 кг·м².

- 3. Горизонтальная платформа массой m=80 кг и радиусом R=1 м вращается с угловой скоростью, соответствующей частоте n=20 об/мин. В центре платформы стоит человек и держит в расставленных руках гири. Какое число оборотов в минуту будет делать платформа, если человек, опустив руки, уменьшит свой момент инерции от 2,94 до 0,98 кг·м²? Считать платформу круглым однородным диском.
- 4. Горизонтальная платформа массой 100 кг вращается вокруг вертикальной оси, проходящей через центр платформы, делая 10 об/мин. Человек массой 60 кг стоит при этом на краю платформы. С какой частотой начнет вращаться платформа, если человек перейдет от края платформы к ее центру? Считать платформу круглым однородным диском, а человека точечной массой.
- 5. На краю горизонтальной платформы, имеющей форму диска радиусом R=2 м, стоит человек массой 80 кг. Масса платформы равна 240 кг. Платформа может вращаться вокруг вертикальной оси, проходящей через ее центр. С какой угловой скоростью будет вращаться платформа, если человек будет идти вдоль ее края со скоростью 2 м/с относительно платформы?
- 6. В центре платформы, вращающейся с частотой 30 об/мин, стоит человек. В опущенных руках человек держит по гире, массой 1 кг каждая. Расстояние между гирями 40 см. Момент инерции тела человека относительно оси вращения I_0 равен 1,6 кг·м². Определить частоту вращения платформы с человеком, если человек вытянет руки в стороны и расстояние между гирями станет 160 см. Моментом инерции платформы пренебречь.
- 7. Человек стоит на скамье Жуковского и ловит рукой мяч массой m=0,4 кг, летящий в горизонтальном направлении со скоростью 20 м/с. Траектория мяча проходит на расстоянии 0,8 м от вертикальной оси вращения скамьи. С какой угловой скоростью начнет вращаться скамья Жуковского с человеком, поймавшим мяч, если суммарный момент инерции человека и скамьи равен $6 \text{ кг} \cdot \text{m}^2$?
- 8. Стержень длиной 1,5 м и массой 10 кг может вращаться вокруг неподвижной оси, проходящей через верхний конец. В середину стержня ударяет пуля массой 10 г, летящая в горизонтальном направлении со скоростью 500 м/с, и застревает в нем. Определить угловую скорость стержня и линейную скорость конца стержня в начальный момент времени.

- 9. Горизонтальная платформа массой m=25 кг и радиусом R=0.8 м вращается с частотой $n_1=23$ мин $^{-1}$. В центре стоит человек, держащий в опущенных руках гири. Считая платформу диском, определить частоту вращения платформы, если человек, расставив руки в стороны, увеличит свой момент инерции от $I_1=1$ кг·м 2 до $I_2=3.5$ кг·м 2 .
- 10. Однородный тонкий стержень массой $m_1 = 0.2$ кг и длиной l = 1 м может свободно вращаться вокруг горизонтальной оси, проходящей через его конец. В середину стержня попадает пластилиновый шарик массой $m_2 = 10$ г, летящий горизонтально со скоростью v = 10 м/с, и прилипает к стержню. Определить угловую скорость стержня.

2.3. Основной закон динамики вращательного движения

Вращающим моментом силы относительно точки O называется вектор \mathbf{M} , равный векторному произведению силы \mathbf{F} на радиус-вектор \mathbf{r} точки приложения силы:

$$\mathbf{M} = [\mathbf{F} \times \mathbf{r}], \quad M = Fr \sin \alpha = Fl$$

где α – угол между векторами \mathbf{F} и \mathbf{r} ; $l = r \sin \alpha - \text{плечо силы}$.

Основной закон динамики вращательного движения:

$$\mathbf{M} = I \mathbf{\epsilon}$$
,

т. е. суммарный момент сил, действующих на вращающееся вокруг некоторой оси тело, равен произведению момента инерции тела относительно данной оси на угловое ускорение тела.

2.4. Кинетическая энергия вращающегося тела. Работа

Кинетическая энергия вращающегося тела определяется как

$$E_{\rm K} = \frac{I\omega^2}{2}$$
,

где I – момент инерции тела, кг·м²; ω – угловая скорость тела, рад/с.

Кинетическая энергия тела, катящегося по плоскости без скольжения:

$$E_{\rm K} = \frac{mv^2}{2} + \frac{I\omega^2}{2},$$

где $mv^2/2$ – кинетическая энергия поступательного движения тела, Дж; v – скорость центра масс тела, м/с; $I\omega^2/2$ – кинетическая энергия вращательного движения тела вокруг оси, проходящей через центр масс, Дж; ω – угловая скорость тела, рад/с.

Работа A постоянного момента силы M, действующего на вращающееся тело:

$$A = M \varphi$$
,

где ϕ – угол поворота тела, рад.

Работа, совершаемая при вращении тела:

$$A = \frac{I\omega_2^2}{2} - \frac{I\omega_1^2}{2},$$

т. е. равна изменению кинетической энергии вращательного движения тела. В формуле I – момент инерции тела; ω_1 и ω_2 – начальная и конечная угловые скорости тела, рад/с.

- 1. Маховик массой m=5 кг и радиусом R=5 м вращается с постоянной угловой скоростью $\omega=31,4$ рад/с. Найти тормозящий момент M, под действием которого маховик останавливается через t=20 с.
- 2. Найти момент инерции I и момент количества движения L земного шара относительно оси вращения. Масса Земли $M_3 = 5,98 \cdot 10^{24}$ кг, радиус земного шара $R_3 = 6,37 \cdot 10^6$ м.
- 3. Однородный стержень длиной L=1 м и массой m=0,5 кг вращается в вертикальной плоскости вокруг горизонтальной оси, проходящей через середину стержня. С каким угловым ускорением ε вращается стержень, если вращающий момент $M=9,81\cdot 10^{-2}~{\rm H\cdot m}$?
- 4. Шар и сплошной цилиндр одинаковой массы, изготовленные из одного материала, катятся без скольжения с одинаковой скоростью. Определить, во сколько раз кинетическая энергия шара меньше кинетической энергии сплошного цилиндра.
- 5. Маховик в виде диска (m = 60 кг, d = 20 см) был раскручен до частоты вращения n = 8 с⁻¹, а затем предоставлен самому себе. Маховик остановился через 1 минуту. Найти момент M сил трения, считая его постоянным.
- 6. Колесо, вращаясь равнозамедленно, уменьшило за t=1 мин частоту вращения от 300 до 180 об/мин. Момент инерции колеса I=2 кг·м 2 . Найти угловое ускорение ϵ колеса и тормозящий момент M.
- 7. К ободу сплошного однородного диска массой m = 10 кг, насаженного на ось, приложена постоянная касательная сила F = 30 Н. Определить кинетическую энергию диска через время t = 4 с после начала действия силы.

- 8. Кинетическая энергия вращающегося маховика 1 кДж. Под действием постоянного тормозящего момента маховик начал вращаться равнозамедленно и, сделав 80 оборотов, остановился. Определить тормозящий момент.
- 9. Тонкий однородный стержень длиной l=50 см и массой m=400 г вращается с угловым ускорением $\epsilon=3$ рад/с 2 вокруг оси, проходящей перпендикулярно стержню через его середину. Определить вращающий момент.
- 10. Полная кинетическая энергия диска, катящегося по горизонтальной поверхности, равна 24 Дж. Определить кинетические энергии поступательного и вращательного движения диска.

3. МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ

3.1. Свободные незатухающие колебания

Свободные незатухающие колебания тел или систем — это гармонические колебания, амплитуда которых не убывает с течением времени за счет отсутствия внешних воздействий и сопротивления среды. Колебания совершаются под действием квазиупругой (возвращающей силы). Уравнение таких колебаний имеет вид:

$$x(t) = A\cos(\omega t + \varphi_0),$$

где x(t) — координата колеблющегося тела в момент времени t, м; A — амплитуда колебаний (максимальное отклонение от положения равновесия), м; ϕ_0 — начальная фаза колебаний, рад; ω — угловая частота колебаний, рад/с; $(\omega t + \phi_0)$ — фаза колебаний в момент времени t, рад.

К характеристикам колебаний также относятся следующие величины: T — период колебаний (время одного колебания); n — частота колебаний (число колебаний в единицу времени), причем T = 1/n.

Угловая частота и период связаны между собой соотношением: $\omega T = 2\pi$. Потенциальная, кинетическая и полная энергии колеблющегося тела:

$$E_{\rm II} = \frac{kx^2}{2} = \frac{kA^2}{2}\cos^2(\omega t + \varphi_0),$$

$$E_{\rm K} = \frac{mv^2}{2} = \frac{kA^2}{2}\sin^2(\omega t + \varphi_0),$$

$$E = E_{\rm K} + E_{\rm II} = \frac{kA^2}{2} = \frac{mA^2\omega^2}{2},$$

где k — коэффициент квазиупругой силы; m — масса колеблющегося тела, кг; v — его скорость, м/с. Максимальное значение как потенциальной, так и кине-

тической энергии равно полной энергии колебаний.

3.2. Свободные затухающие колебания

При наличии сил трения или сопротивления среды свободные колебания становятся затухающими, а их амплитуда убывает с течением времени.

Уравнение свободных затухающих колебаний имеет вид:

$$x(t) = A(t)\cos(\omega t + \varphi_0) = A_0 e^{-\frac{t}{\tau}}\cos(\omega t + \varphi_0).$$

Амплитуда таких колебаний изменяется по закону

$$A(t) = A_0 e^{-\frac{t}{\tau}},$$

где A_0 – начальная амплитуда колебаний.

Характеристики затухающих колебаний:

- время затухания τ (время, в течение которого амплитуда колебаний уменьшается в e раз);
 - коэффициент затухания β, связанный с временем затухания:

$$\beta = 1/\tau$$
;

– логарифмический декремент колебаний

$$\theta = \ln \frac{A_i}{A_{i+1}} = \frac{T}{\tau},$$

где A_i и A_{i+1} – амплитуды двух следующих друг за другом колебаний;

– энергия колеблющегося тела

$$E(t) = E_0 e^{-\frac{2t}{\tau}};$$

- мощность потерь энергии

$$P = -\frac{2}{\tau} E_0 e^{-\frac{2t}{\tau}};$$

– добротность осциллятора

$$\Theta = 2\pi \frac{E(t)}{E(t) - E(t+T)} = \frac{\pi \tau}{T},$$

где E(t) — энергия колеблющегося тела в момент времени t; E(t+T) — энергия тела через период колебаний T. Добротность пропорциональна числу колебаний, совершаемых за время затухания.

3.3. Сложение колебаний

При сложении двух колебаний равной частоты вдоль одного направления

$$x_1(t) = A_1 \cos(\omega t + \varphi_{01}), \quad x_2(t) = A_2 \cos(\omega t + \varphi_{02});$$

результирующее колебание запишется как

$$x(t) = A\cos(\omega t + \varphi_0)$$
.

Амплитуда результирующего колебания находится как модуль векторной суммы амплитуд A_1 и A_2 складываемых колебаний:

$$A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos\Delta\phi_0},$$

где $\Delta \phi_0$ – разность фаз складываемых колебаний: $\Delta \phi_0 = \phi_{02} - \phi_{01}$.

Начальная фаза результирующего колебания находится по формуле

$$tg\phi_0 = \frac{A_y}{A_x} = \frac{A_{1y} + A_{2y}}{A_{1x} + A_{2x}}.$$

Таким образом, в результате сложения однонаправленных колебаний одинаковой частоты получаем гармоническое колебание в том же направлении и с той же частотой.

3.4. Маятники

Пружинный маятник – груз массой *m*, подвешенный на абсолютно упругой пружине и совершающий колебания под действием силы упругости пружины. Период и угловая частота колебаний выражаются:

$$T = 2\pi \sqrt{\frac{m}{k}}, \quad \omega = \sqrt{\frac{k}{m}},$$

где k – жесткость пружины, H/M.

Математический маятник — материальная точка, подвешенная на невесомой нерастяжимой нити и колеблющаяся под действием силы тяжести. Период и угловая частота колебаний выражаются:

$$T = 2\pi \sqrt{\frac{l}{g}}, \quad \omega = \sqrt{\frac{g}{l}},$$

где l – длина нити, м .

Крутильный маятник — твердое тело, подвешенное на вертикальном упругом невесомом стержне, верхний конец которого закреплен неподвижно, а колебания обусловлены силой упругости стержня при его кручении. Период и угловая частота колебаний выражаются:

$$T = 2\pi \sqrt{\frac{I}{k}}$$
, $\omega = \sqrt{\frac{k}{I}}$,

где I – момент инерции тела, кг·м²; k – жесткость стержня, H/M.

Физический маятник — твердое тело, совершающее колебания под действием силы тяжести относительно неподвижной горизонтальной оси, не проходящей через его центр тяжести. Период и угловая частота колебаний выражаются:

$$T = 2\pi \sqrt{\frac{I}{mgl}} = 2\pi \sqrt{\frac{l_{\Pi p}}{g}}, \quad \omega = \sqrt{\frac{mgl}{I}},$$

где $l_{\rm пp} = I/ml$ — приведенная длина физического маятника, м; m — масса тела, кг; I — его момент инерции, кг·м 2 ; l — расстояние от центра масс до оси вращения, м.

- 1. Два одинаково направленных гармонических колебания одного периода с амплитудами $A_1 = 10$ см и $A_2 = 6$ см складываются в одно колебание с амплитудой A = 14 см. Найдите разность фаз складываемых колебаний.
- 2. Грузик m=250 г, подвешенный к пружине, колеблется по вертикали с периодом T=1 с. Определить жесткость k пружины и полную энергию E колебаний гири.
- 3. Найдите отношения длин двух математических маятников, если отношение периодов их колебаний рано 1,5.
- 4. Гиря массой m = 100 г, подвешенная к пружине, колеблется по вертикали с амплитудой A = 4 см. Определить период колебаний и полную энергию E колебаний гири, если жесткость k пружины равна 1 кH/м.
- 5. Два гармонических колебания, направленных по одной прямой и имеющих одинаковые амплитуды и периоды, складываются в одно колебание той же амплитуды. Найти разность фаз $\Delta \phi$ складываемых колебаний.
- 6. Диск радиусом 24 см колеблется около горизонтальной оси, проходящей через середину одного из радиусов перпендикулярно плоскости диска. Определить приведенную длину и период колебаний такого маятника.
- 7. Амплитуда затухающих колебаний за t = 2 мин уменьшилась в 2 раза. Определить коэффициент затухания β .
- 8. Логарифмический декремент колебаний Θ маятника равен 0,01. Найти число N полных колебаний маятника до уменьшения его амплитуды в 3 раза.

Часть II. МОЛЕКУЛЯРНАЯ ФИЗИКА

И ТЕРМОДИНАМИКА

Для изучения процессов, происходящих в макроскопических телах, (т. е. телах, состоящих из очень большого числа частиц — атомов или молекул), используются два метода: молекулярно-кинетический (статистический) и термодинамический. Статистический метод объясняет свойства систем как суммарный усредненный результат свойств отдельных частиц. При этом используются так называемые микропараметры — параметры, характеризующие свойства каждой частицы в отдельности (координата, скорость, энергия и т.д.), а для изучения применяются методы математической статистики. В термодинамическом методе для описания системы используются макропараметры — параметры, характеризующие состояние системы в целом без учета молекулярных явлений, происходящих в ней. Таковыми для термодинамической системы являются температура, давление, объем, плотность, т. е. параметры состояния системы.

1. МОЛЕКУЛЯРНОЕ СТРОЕНИЕ ВЕЩЕСТВА

Определим некоторые понятия молекулярной физики и термодинамики. Относительная молекулярная масса вещества выражается как

$$M=\sum_{i}n_{i}A_{i},$$

где n_i — число атомов i-го химического элемента, входящего в состав молекулы данного вещества; A_i — относительная атомная масса этого элемента. Относительные атомные массы (у. е.) приводятся в таблице Д. И. Менделеева.

Единицей массы вещества m является 1/12 массы атома углерода 12 С и в системе СИ измеряется в кг. Масса не является мерой количества вещества.

Единицей количества вещества является 1 моль. *Количеством вещества* (числом молей) v называется физическая величина, определяемая числом частиц вещества. В одном моле разных веществ содержится одинаковое число структурных единиц (атомов, молекул, ионов). Это число называется постоянной Авогадро $N_A = 6,022 \cdot 10^{23}$ моль⁻¹. Тогда число молей можно выразить как

$$\nu = N / N_A = m / \mu$$
 (моль),

где N — число частиц в веществе, μ — молярная масса вещества.

Молярная масса µ – масса одного моля вещества:

$$\mu = m / \nu = m_0 N_A$$
 (кг/моль).

Связь молярной массы μ с относительной молекулярной массой M вещества:

$$\mu = M \cdot 10^{-3}$$
 (кг/моль).

Объем одного моля называется *молярным объемом* V_{μ} . При нормальных условиях ($T_0=273~{\rm K},~p_0=10^5~{\rm \Pi a}$) молярные объемы всех идеальных газов одинаковы: $V_{\mu}=22,4~{\rm M}^3/{\rm KMOJL}=22,4~{\rm J/MOJL}$.

$$p = F / S$$
.

Единицы измерения давления – Паскаль (СИ), атмосфера, мм. рт. ст. (1 атм = $10^5 \, \Pi a = 760 \, \text{мм. рт. ст.}$).

Температура T в термодинамике определяется как величина, характеризующая направление теплообмена между телами. В абсолютной термодинамической шкале температура измеряется в Кельвинах (К). Температура T=0 К называется абсолютным нулем температуры. Связь между термодинамической температурой T и температурой t по стоградусной шкале Цельсия: $T=t^{o}+273$.

 $\it Объемом V$ вещества называется отношение массы вещества к его плотности:

$$V = m/\rho$$
.

Единица измерения объема -1 m^3 .

- 1. В баллоне вместимостью V=3 л, находится кислород массой m=4 г. Определить число молей ν и число N молекул газа.
- 2. Кислород при нормальных условиях (н.у.) заполняет сосуд вместимостью V = 11,2 л. Определить число молей v газа и его массу m.
- 3. Определить число молей ν водорода, заполняющего сосуд вместимостью V=3 л, если плотность газа $\rho=6.65\cdot 10^{-3}$ кг/м 3 .
- 4. Колба вместимостью V = 0.5 л содержит газ при нормальных условиях (н. у.). Определить число N молекул газа, находящегося в колбе.
- 5. В сосуде вместимостью V=5 л находится однородный газ количеством вещества $\nu=0,2$ моль. Определить, какой это газ, если его плотность $\rho=1,12$ кг/м 3 .
 - 6. Определить количество вещества v и число N молекул азота массой 0,2 кг.
- 7. В сосуде вместимостью V=2 л находится кислород, количество вещества которого $\nu=0,2$ моль. Определить плотность ρ газа.

8. Определить число N атомов в 1 кг водорода и массу одного атома водорода.

2. ОСНОВНЫЕ ГАЗОВЫЕ ЗАКОНЫ. УРАВНЕНИЕ СОСТОЯНИЯ ИДЕАЛЬНОГО ГАЗА

В молекулярно-кинетической теории (МКТ) рассматривается идеализированная модель реальных газов. Газ называется идеальным, если при его рассмотрении соблюдаются следующие условия:

- а) соударения молекул газа абсолютно упругие;
- б) размерами молекул можно пренебречь по сравнению с расстояниями между ними;
 - в) между молекулами не проявляются силы взаимного притяжения.

Таким условиям отвечают сильно разреженные обычные газы при средненизких температурах.

Для идеальных газов справедливы эмпирические законы, описывающие поведение газов в изопроцессах.

Изопроцессами называются термодинамические процессы при постоянном значении одного из параметров состояния.

Изохорным процессом называется процесс, протекающий при постоянном объеме и описываемый законом Шарля:

$$p/T = \text{const}$$
 или $p_1/T_1 = p_2/T_2$.

Изобарным процессом называется процесс, протекающий при постоянном давлении и описываемый законом Гей–Люссака:

$$V/T = \text{const}$$
 или $V_1/T_1 = V_2/T_2$.

Изотермическим процессом называется процесс, протекающий при постоянной температуре и описываемый законом Бойля—Мариотта:

$$pV = \text{const}$$
 или $p_1V_1 = p_2V_2$.

Перечисленные закономерности могут быть объединены общим уравнением. Эмпирически установлено, что равновесное состояние идеального газа, определяемое тремя параметрами — давлением, температурой и объемом, — описывается соотношением, называемым *уравнением состояния* (уравнением Клапейрона):

$$\frac{pV}{T} = C$$
,

где C – газовая постоянная, зависящая от массы и химического состава газа, а также от выбора единиц измерения p, T, V.

Применительно к 1 молю газа это уравнение приобретает вид:

$$pV = RT$$
,

где R = 8,31, Дж/(К·моль) называется универсальной газовой постоянной и имеет одинаковое значение для любого газа.

Для произвольной массы т газа уравнение состояния имеет вид

$$pV = \frac{m}{\mu}RT = \nu RT$$

и называется уравнением Менделеева-Клапейрона.

При нормальных условиях уравнение состояния можно записать в виде:

$$\frac{p_0 V_{\mu}}{T_0} = R,$$

откуда была вычислена константа R.

Другой вид уравнения состояния идеального газа:

$$p = nkT$$
,

где n = N/V — концентрация газа (число молекул в единице объема), м $^{-3}$; $k = R/N_A = 1,38 \cdot 10^{-23}$ (Дж/К) — постоянная Больцмана.

- 1. При температуре $t_1 = 17$ °C некоторое количество газа занимает объем V = 580 мл. Какой объем займет это же количество газа при температуре $t_2 = 100$ °C, если давление его останется неизменным?
- 2. На сколько градусов надо нагреть газ, находящийся в закрытом сосуде при температуре t=0 °C, чтобы давление его увеличилось вдвое?
- 3. Давление газа, занимающего объем $V_1 = 2,5$ л, равно $p = 1,20 \cdot 10^5$ Па. Каким станет давление, если, не изменяя температуру, сжать газ до объема $V_2 = 1$ л?
- 4. В стальном баллоне емкостью V=12л находится кислород под давлением $p=1,50\cdot 10^7$ Па при температуре t=0 °C . Сколько литров кислорода, приведенного к нормальным условиям, можно получить из такого баллона?
- 5. При температуре $t_1 = 7$ °C давление газа в закрытом сосуде равно $p = 95.8 \cdot 10^8$ Па. На сколько изменится давление, если охладить сосуд до температуры $t_2 = -33$ °C?
- 6. Котел вместимостью $V = 2 \text{ м}^3$ содержит перегретый водяной пар, массой m = 10 кг при температуре T = 500 K. Определить давление p пара в котле.

- 7. Баллон вместимостью V=20 л содержит углекислый газ m=500 г под давлением p=1,3 МПа . Определить температуру T газа.
- 8. Газ при температуре $T=309~{\rm K}$ и давлении $p=0,7~{\rm M}\Pi$ а имеет плотность $\rho=12~{\rm kr/m}^3$. Определить относительную молекулярную массу газа M.

3. ОСНОВНОЕ УРАВНЕНИЕ МКТ

Основное уравнение молекулярно-кинетической теории, связывающее макро- и микропараметры газа между собой, имеет вид:

$$p = \frac{1}{3} n m_1 \overline{v}_{KB}^2 = \frac{2}{3} n \frac{m_1 \overline{v}_{KB}^2}{2} = \frac{2}{3} n \overline{\epsilon}_{K \text{ IIC}},$$

где n — концентрация молекул газа, м $^{-3}$; m_1 — масса одной молекулы газа, кг; $\overline{\upsilon}_{\rm KB}$ — среднеквадратичная скорость движения молекул, м/с; $\overline{\varepsilon}_{\rm K\ IIC}$ — средняя кинетическая энергия поступательного движения молекул, Дж.

При исследовании движения тела надо знать его положение относительно выбранной системы координат. Для этого вводится понятие о степенях свободы материального объекта. *Числом степеней свободы і* материального объекта называют число независимых координат, которые необходимо задать, чтобы однозначно определить положение этого объекта относительно рассматриваемой системы отсчета. В общем случае число степеней свободы молекулы равно:

$$i = i_{\Pi C} + i_{BD} + i_{KJI},$$

где $i_{\rm nc}$ — число степеней свободы поступательного движения; $i_{\rm sp}$ — число степеней свободы вращательного движения; $i_{\rm KJ}$ — число степеней свободы колебательного движения.

Для одноатомных молекул i=3 ($i_{\rm IIC}=3$; $i_{\rm Bp}=0$); для двухатомных молекул i=5 ($i_{\rm IIC}=3,\,i_{\rm Bp}=2$); для трехатомных молекул i=6 ($i_{\rm IIC}=3,\,i_{\rm Bp}=3$).

Все виды движения связаны с некоторым запасом энергии, равнораспределенной по степеням свободы молекулы. Тогда средняя полная кинетическая энергия молекулы принимает вид:

$$\overline{\varepsilon}_{\rm K} = \frac{i}{2}kT$$
.

При этом средняя кинетическая энергия молекулы, приходящаяся на поступательное движение

$$\overline{\varepsilon}_{\rm K\ \Pi C} = \frac{3}{2}kT \ ;$$

а кинетическая энергия вращательного движения молекулы

$$\overline{\varepsilon}_{\rm KBp} = \frac{i-3}{2}kT.$$

Среднеквадратичную скорость движения молекул можно выразить через параметры газа

$$\overline{\upsilon}_{\mathrm{KB}} = \sqrt{\frac{3kT}{m_1}} = \sqrt{\frac{3RT}{m_1 N_A}} = \sqrt{\frac{3RT}{\mu}} \ .$$

Средняя арифметическая скорость молекул имеет вид:

$$\overline{\upsilon} = \sqrt{\frac{8kT}{\pi m_1}} \ .$$

Наиболее вероятная скорость движения молекул записывается как

$$v_{\rm Bep} = \sqrt{\frac{2kT}{m_1}} \ .$$

Скорости молекул в основном группируются вблизи наиболее вероятного значения. Средняя арифметическая и среднеквадратичная скорости превышают наиболее вероятную скорость на 13 и 22 % соответственно.

- 1. Концентрация молекул идеального газа $n \approx 10^{20} \ {\rm cm}^{-3}$. Газ находится при температуре $T=10 \ {\rm K}$. Определить давление идеального газа при этой температуре.
- 2. Идеальный газ находится при нормальных условиях (н. у.) в закрытом сосуде. Определить концентрацию n молекул газа.
- 3. В сосуде вместимостью V=12 л находится идеальный газ, число молекул N которого равно $1,44\cdot 10^{18}$. Определить давление этого газа при T=20 К.
- 4. В колбе вместимостью $V=240~{\rm cm}^3~$ находится газ при температуре $T=290~{\rm K}$ и давлении $p=50~{\rm k}\Pi$ а. Определить количество вещества v~ молей газа и число N~ его молекул.
- 5. В сосуде вместимостью V = 20 л находится v = 1,5 кмоля газа. Определить давление этого газа при температуре T = 10 K, считая его идеальным.
- 6. Определить среднюю арифметическую скорость $\overline{\upsilon}$ молекул водяного пара при температуре T=600 K, а также среднюю кинетическую энергию поступательного движения $\overline{\varepsilon}_{\rm K\ IIC}$ и среднее значение полной кинетической энергии $\overline{\varepsilon}_{\rm K}$ одной молекулы.

- 7. Некоторое количество кислорода при нормальных условиях (н.у.) находится в колбе, объем которой V=1 л. Определить среднюю кинетическую энергию $\overline{\varepsilon}_{\rm K\ IIC}$ поступательного движения всех молекул, содержащихся в колбе, и их наиболее вероятную скорость $v_{\rm Ren}$.
- 8. Колба вместимостью V=4 л содержит некоторый двухатомный газ массой m=0,6 г под давлением p=200 кПа. Определить среднюю квадратичную скорость $\overline{\upsilon}_{\rm KB}$ молекул газа, а также среднее значение полной кинетической энергии $\overline{\varepsilon}_{\rm K}$ одной его молекулы при температуре $T=300~{\rm K}.$

4. ВНУТРЕНЯЯ ЭНЕРГИЯ ГАЗА

Изменение состояния системы тел обусловлено передачей энергии от одного тела системы к другому. Передача энергии может происходить либо в форме механической работы A, либо в форме теплоты Q, обусловленной тепловым молекулярным движением.

Полная энергия E системы состоит:

- а) из кинетической энергии $E_{\rm K}$ ее макроскопического движения как целого;
- б) потенциальной энергии E_{Π} , обусловленной внешними силовыми полями;
- в) внутренней энергии U движения и взаимодействия частиц

$$E = E_{K} + E_{\Pi} + U.$$

Внутренняя энергия системы зависит от ее термодинамического состояния. Так как изменение состояния системы характеризуется параметрами p, T, V, то внутренняя энергия есть функция параметров состояния.

В термодинамике учитывается только внутренняя энергия системы, которая слагается из кинетической энергии поступательного, вращательного и колебательного движений молекул, потенциальной энергии взаимодействия между молекулами и внутримолекулярной энергии. В термодинамические формулы входит не сама энергия, а ее приращение ΔU , так как внутреннюю энергию системы при T=0 принято считать равной нулю. Обычно в термодинамике изучаются процессы, в которых внутримолекулярная энергия остается постоянной, а значит ее приращение равно нулю. Для газов кинетическая энергия молекул много больше потенциальной энергии. Поэтому внутренняя энергия газов в основном определяется кинетической энергией молекул $E_{\rm K}$: $U\approx E_{\rm K}$, а приращение $\Delta U\approx \Delta E_{\rm K}$. Следовательно, внутреннюю энергией молекул $E_{\rm K}$: $U\approx E_{\rm K}$, а приращение $\Delta U\approx \Delta E_{\rm K}$. Следовательно, внутреннюю энергия

гию одного моля идеального газа можно найти, умножив среднюю энергию одной молекулы $\varepsilon_{\rm K}$ на постоянную Авогадро N_A :

$$U_{\mu} = N_A \overline{\varepsilon}_{K} = \frac{i}{2} N_A kT = \frac{i}{2} RT ,$$

а изменение внутренней энергии газа для любого числа молей примет вид:

$$\Delta U = \frac{i}{2} \nu R \Delta T = \frac{i}{2} \nu R (T_2 - T_1),$$

где i — число степеней свободы молекулы; ν — число молей газа; $\Delta T = (T_2 - T_1)$ — изменение абсолютной температуры газа при переходе его из состояния с температурой T_1 в состояние с температурой T_2 . Существенно, что изменение внутренней энергии при этом определяется только его начальным и конечным состоянием и не зависит от способа перехода из одного состояния в другое.

5. ТЕПЛОТА

Количество энергии, переданной от одного тела к другому в процессе теплопередачи, измеряется теплотой, отданной одним телом другому. Передача теплоты не связана с перемещением тел, а обусловлена тем, что при соприкосновении двух тел отдельные молекулы более нагретого тела передают свою кинетическую энергию отдельным молекулам менее нагретого тела.

Теплота может переходить в работу и наоборот работа в теплоту. Эти преобразования энергии происходят в строго эквивалентных количествах. В СИ работа и теплота измеряются в одних единицах – джоулях (Дж).

6. ТЕПЛОЕМКОСТЬ ИДЕАЛЬНОГО ГАЗА

В термодинамике для характеристики тепловых свойств тел используется понятие теплоемкости. *Теплоемкостью* вещества называется величина, равная количеству теплоты, которое нужно сообщить веществу, чтобы повысить его температуру на один градус (Кельвин):

$$C = \Delta Q / \Delta T$$
, (Дж/К).

Теплоемкость единицы массы вещества, т. е. количество теплоты, необходимое для нагрева на один градус 1 кг вещества, называется удельной теплоемкостью:

$$c = \Delta Q / m\Delta T$$
, (Дж/кг·К).

Молярной теплоемкостью называется теплоемкость 1 моля вещества, т. е. тепло, необходимое для нагрева на один градус 1 моля вещества:

$$C_{\mathsf{LL}} = \Delta Q / \nu \Delta T$$
, (Дж/моль·К).

Удельная и молярная теплоемкости связаны соотношением:

$$c = C_{\mu} / \mu.$$

Теплоемкость зависит от условий, при которых происходит нагревание вещества. Наиболее интересны случаи нагревания при постоянном объеме (изохорный процесс) и постоянном давлении (изобарный процесс). Выражения для молярных теплоемкостей вещества при постоянном объеме C_V и постоянном давлении C_P имеют вид:

$$C_V = \frac{i}{2}R$$
, $C_P = \frac{i+2}{2}R$.

Соответствующие удельные теплоемкости будут равны:

$$c_V = \frac{i}{2} \frac{R}{\mu} , \quad c_P = \frac{i+2}{2} \frac{R}{\mu} .$$

Связь между C_V и C_P получила название *уравнения Майера*:

$$C_P = C_V + R$$
.

Процесс, протекающий без теплообмена с окружающей средой, называется адиабатным процессом. Для такого процесса $\Delta Q=0$. Уравнение состояния идеального газа при адиабатном процессе имеет вид:

$$pV^{\gamma} = \text{const}$$
 или $TV^{\gamma-1} = \text{const}$,

где $\gamma = \frac{C_P}{C_V} = \frac{i+2}{i}$ – показатель адиабаты. Уравнение адиабаты в переменных p

и V называют еще уравнением Пуассона. Также из данного уравнения вытекает, что при адиабатическом расширении идеальный газ охлаждается, а при сжатии расширяется.

Задачи

1. Вычислить удельные и молярные теплоемкости при постоянном объеме и постоянном давлении (c_V, c_p, C_V, C_p) гелия (He), фтора (F_2) , двуокиси азота (NO_2) . Считать газы идеальными. С помощью полученных результатов подтвердить уравнение Майера.

$$A_{He} = 4$$
 y. e. $A_F = 19$ y. e. $A_N = 14$ y. e. $A_O = 16$ y. e.

2. Вычислить удельные и молярные теплоемкости при постоянном объеме и постоянном давлении (c_V, c_p, C_v, C_p) неона (Ne), кислорода (O_2) , серо-

водорода (H_2S) . Считать газы идеальными. С помощью полученных результатов подтвердить уравнение Майера.

$$A_{Ne} = 20$$
 y. e. $A_O = 16$ y. e. $A_H = 1$ y. e. $A_S = 32$ y. e.

3. Вычислить удельные и молярные теплоемкости при постоянном объеме и постоянном давлении (c_V, c_p, C_V, C_p) аргона (Ar), водорода (H_2) , углекислого газа (CO_2) . Считать газы идеальными. С помощью полученных результатов подтвердить уравнение Майера.

$$A_{Ar} = 40$$
 y. e. $A_O = 16$ y. e. $A_H = 1$ y. e. $A_C = 12$ y. e.

4. Вычислить удельные и молярные теплоемкости при постоянном объеме и постоянном давлении (c_V, c_p, C_V, C_p) радона (Rn), хлора (Cl_2) , сернистого газа (SO_2) . Считать газы идеальными. С помощью полученных результатов подтвердить уравнение Майера.

$$A_{Rn} = 222$$
 y. e. $A_O = 16$ y. e. $A_S = 32$ y. e. $A_{Cl} = 35$ y. e.

5. Вычислить удельные и молярные теплоемкости при постоянном объеме и постоянном давлении (c_V, c_p, C_V, C_p) гелия (He), хлора (Cl_2) , углекислого газа (CO_2) . Считать газы идеальными. С помощью полученных результатов подтвердить уравнение Майера.

$$A_{He} = 4$$
 y. e. $A_O = 16$ y. e. $A_{Cl} = 35$ y. e. $A_C = 12$ y. e.

6. Вычислить удельные и молярные теплоемкости при постоянном объеме и постоянном давлении (c_V, c_p, C_V, C_p) неона (Ne), фтора (F_2) , двуокиси азота (NO_2) . Считать газы идеальными. С помощью полученных результатов подтвердить уравнение Майера.

$$A_{Ne} = 20$$
 y. e. $A_O = 16$ y. e. $A_F = 19$ y. e. $A_N = 14$ y. e.

7. Вычислить удельные и молярные теплоемкости при постоянном объеме и постоянном давлении (c_V, c_p, C_V, C_p) аргона (Ar), кислорода (O_2) , сернистого газа (SO_2) . Считать газы идеальными. С помощью полученных результатов подтвердить уравнение Майера.

$$A_{Ar} = 40$$
 y. e. $A_O = 16$ y. e. $A_S = 32$ y. e.

8. Вычислить удельные и молярные теплоемкости при постоянном объеме и постоянном давлении $(c_V$, c_p , C_V , C_p) радона (Rn), водорода (H_2) , сероводорода $(H_2 S)$. Считать газы идеальными. С помощью полученных результатов подтвердить уравнение Майера.

$$A_{Rn} = 222$$
 y. e. $A_H = 1$ y. e. $A_S = 32$ y. e.

7. РАБОТА ГАЗА

Работа, связанная с изменением объема газа, в общем случае вычисляется по формуле

$$A = \int_{V_1}^{V_2} p dV ,$$

где V_1 – начальный объем газа, V_2 – его конечный объем.

Соответственно, работа газа при различных процессах имеет вид:

- 1) при изохорном процессе A=0;
- 2) при изобарном процессе $A = p(V_2 V_1);$
- 3) при изотермическом процессе $A = vRT \ln \frac{V_2}{V_1} = vRT \ln \frac{p_1}{p_2};$
- 4) при адиабатном процессе $A = v \frac{p_1 V_1}{\gamma 1} \left[1 \left(\frac{V_1}{V_2} \right)^{\gamma 1} \right].$

Следует понимать, что речь идет о равновесных процессах, т. е. процессах, при которых изменение состояния тела происходит бесконечно медленно.

- 1. Газ, занимающий объем V_1 = 12 л под давлением p_1 = 100 кПа, был изобарно нагрет от температуры T_1 = 300 К до температуры T_2 = 400 К. Определить работу A расширения газа.
- 2. Кислород массой $m=800~\mathrm{r}$, охлажденный от температуры $t_1=100~\mathrm{^{\circ}C}$ до температуры $t_2=20~\mathrm{^{\circ}C}$, сохранил неизменный объем V. Определить совершенную газом работу A.
- 3. Какая работа A совершается при изотермическом расширении водорода массой m=5 г, взятого при температуре T=290 К, если объем газа увеличивается в n=3 раза? $\mu_{H_2}=2$ у. е.
- 4. Азот массой m=2 г, имевший температуру $T_1=300$ К, был адиабатно сжат так, что его объем уменьшился в n=10 раз. Определить конечную температуру T_2 газа и работу A сжатия газа. $\mu_{N_2}=28$ у. е.

- 5. Водород массой m=4 г был охлажден на $\Delta T=10$ К при постоянном давлении. Определить работу A сжатия газа. $\mu_{H_2}=2$ у. е.
- 6. Азот массой m=400 г был нагрет на $\Delta T=50$ К , при этом объем его остался постоянным. Определить совершенную газом работу A.
- 7. Азот массой m=1 г, взятый при температуре T=280 К под давлением p=0,1 МПа, изотермически сжат до давления p=1,0 МПа. Определить работу сжатия газа. $\mu_{N_2}=28$ у. е.
- 8. Определить работу A адиабатного расширения водорода массой m=4 г, если температура понизилась на $\Delta T=10$ К. $\mu_{H_2}=2$ у. е.

8. ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ

Первое начало (закон) термодинамики выражает закон сохранения энергии, согласно которому энергия любой изолированной системы остается неизменной:

$$\Delta U = \Delta Q + A'$$

т. е. элементарная работа A', совершенная над системой внешними силами и переданная системе теплота ΔQ в сумме равны изменению внутренней энергии системы. Работа A' равна по величине и противоположна по знаку работе A системы против внешних сил. С учетом этого первое начало термодинамики можно сформулировать как: количество теплоты, сообщенное системе, идет на приращение ее внутренней энергии и на совершение системой работы против внешних сил, что можно записать в виде

$$\Delta Q = \Delta U + A$$
,

где $\Delta U-\,$ изменение внутренней энергии газа; $A-\,$ работа, совершенная газом.

Применительно к газам в различных состояниях первое начало термодинамики принимает вид:

1) при изохорном процессе $\Delta Q = \Delta U$; (A = 0);

2) при изобарном процессе $\Delta Q = \Delta U + A$;

3) при изотермическом процессе $\Delta Q = A$; ($\Delta U = 0$);

4) при адиабатном процессе $\Delta U = -A; \ \Delta Q = 0.$

Задачи

1. Азот нагревается при постоянном давлении, причем ему было сообщено количество теплоты $\Delta Q=21$ кДж. Определить работу A, которую совершает газ и изменение ΔU его внутренней энергии.

- 2. Водород при нормальных условиях имел объем $V_1 = 100 \text{ м}^3$. Найти изменение ΔU внутренней энергии газа при его адиабатном расширении до объема $V_2 = 150 \text{ м}^3$.
- 3. Водород занимает объем V_1 =10 м 3 при давлении p_1 =100 кПа. Газ нагрет при постоянном объеме до давления p_2 = 300 кПа. Найти: изменение ΔU внутренней энергии газа, работу A, совершенную газом, количество теплоты ΔQ , сообщенное газу.
- 4. Азот массой m=200 г расширяется изотермически при температуре T=280 К, причем объем газа увеличивается в 2 раза. Найти: изменение ΔU внутренней энергии газа, совершенную при расширении газа работу A, количество теплоты ΔQ , полученное газом. $\mu_{N_2}=28$ у. е.
- 5. Гелий массой m=1 г был нагрет на $\Delta T=100$ К, при постоянном давлении p. Найти: количество теплоты ΔQ , переданное газу, работу A расширения газа, приращение ΔU внутренней энергии. $\mu_{He}=4$ у. е.
- 6. При адиабатном сжатии кислорода массой m=20 г, его внутренняя энергия увеличилась на $\Delta U=8$ кДж и температура повысилась до $T_2=900$ К. Найти: повышение температуры ΔT и конечное давление газа p_2 , если начальное давление $p_1=200$ кПа. ($\mu_{O_2}=32$ у. е.).
- 7. При изохорном нагревании кислорода объемом V=50 л давление газа изменилось на $\Delta p=0,5$ МПа. Найти: количество теплоты ΔQ , сообщенное газу, изменение ΔU внутренней энергии газа, работу A, совершенную газом.
- 8. При изотермическом расширении кислорода, содержавшего количество вещества v=1 моль при начальной температуре T=300 K, газу было передано количество теплоты $\Delta Q=2$ кДж. Во сколько раз увеличился объем газа?

9. ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ

Первое начало термодинамики не позволяет определить, в каком направлении может проходить термодинамический процесс. Возможность протекания процессов и их направление определяет второе начало (закон) термодинамики.

Круговым процессом или *циклом* называется термодинамический процесс, в результате совершения которого рабочее тело возвращается в исходное состояние.

Термический (термодинамический) коэффициент полезного действия (КПД) произвольного цикла:

$$\eta = \frac{A}{Q_1} = \frac{Q_1 - Q_2}{Q_1} = 1 - \frac{Q_2}{Q_1},$$

где Q_1 — количество теплоты, сообщенное рабочему телу (газу) нагревателем (затраченная энергия нагревателя); Q_2 — количество теплоты, которое рабочее тело отдает холодильнику (охладителю); $A = (Q_1 - Q_2)$ — полезная работа, совершаемая рабочим телом за один цикл.

Для обратимого кругового процесса (цикла Карно) преобразования приводят к выражению

$$\eta_k = \frac{T_1 - T_2}{T_1} = 1 - \frac{T_2}{T_1},$$

где T_1 — температура нагревателя; T_2 — температура холодильника.

Для необратимых процессов в реальных машинах

$$\eta = 1 - \frac{Q_2}{Q_1} < \eta_k = 1 - \frac{T_2}{T_1}$$
.

Максимальная работа при всяком превращении тепловой энергии

$$A_{\text{max}} = Q_1 (1 - \frac{T_2}{T_1}) = Q_1 - T_2 \frac{Q_1}{T_1} = Q_1 - Q_2.$$

Теплота Q_2 отбирается холодильником и не может быть превращена в работу. Отношение $\frac{Q_1}{T_1}$ характеризует ту часть энергии, которую нельзя превратить в работу в данной системе. Оно является мерой рассеяния энергии и называется приведенной теплотой или э*нтропией S*. Если $\frac{dQ}{T}$ — элементарное приведенное тепло, полученное в бесконечно малом процессе, тогда бесконечно малое изменение энтропии

$$dS = \frac{dQ}{T}$$
 (Дж/моль·К).

Каждому состоянию системы соответствует одно определенное значение энтропии. Поэтому энтропия является однозначной функцией состояния. Изменение энтропии не зависит от путей перехода системы из начального состояния в конечное. Абсолютное значение энтропии рассчитать нельзя. Можно лишь найти изменение энтропии в результате процесса:

$$\int_{A}^{B} dS = \int_{A}^{B} \frac{dQ}{T} = S_A - S_B,$$

где S_A и S_B — значения энтропии, соответствующие начальному A и конечному B состояниям системы. В конечном обратимом процессе $\Delta S = 0$.

В термодинамике доказывается, что энтропия системы, совершающей необратимый цикл, возрастает: $\Delta S > 0$, т. е. естественные процессы сопровождаются увеличением энтропии.

Естественные процессы направлены к состоянию равновесия, а так как при этом энтропия возрастает, то устойчивому состоянию изолированной системы соответствует максимальное значение энтропии. Таким образом, если система адиабатно изолирована (dQ=0, и V= const), ее энтропия не может убывать: она либо возрастает, либо остается постоянной: $\Delta S \ge 0$ — неравенство Клаузиуса.

Другое определение энтропии статистическое. Всякое макросостояние системы, описываемое с помощью макропараметров (p, V, T), реализуется посредством некоторого числа микросостояний. Число различных микросостояний, осуществляющих данное макросостояние, называется термодинамической вероятностью W системы, или статистическим весом Ω данного макросостояния. В качестве характеристики такой вероятности и принимается величина, называемая энтропией системы. Больцман показал, что энтропия $S = k \ln \Omega$, где k – константа Больцмана.

Изолированная система стремится достичь наиболее вероятного состояния, т. е. макроскопического состояния, соответствующего наибольшему числу микросостояний. Уменьшение упорядоченности расположения частиц в данной системе вызывает увеличение энтропии, а значит энтропия характеризует меру беспорядочности, хаотичности в системе.

Все перечисленное составляет суть второго закона термодинамики: $dS \ge 0$.

Это выражение является критерием возможности самопроизвольного протекания процесса в изолированной системе, т. е. показывает, будет ли процесс самопроизвольным (необратимым) или обратимым.

Энтропия является функцией состояния системы, следовательно, она может быть представлена в виде функции параметров состояния -p, V, T. Если система совершает равновесный переход из состояния 1 в состояние 2, то

$$\Delta S = S_2 - S_1 = \int_1^2 \frac{dQ}{T} = \int_1^2 \frac{dU + dA}{T}.$$

Изменение энтропии при различных процессах принимает вид:

1) изохорный процесс:
$$\Delta S_V = \frac{m}{\mu} C_V \ln \frac{T_2}{T_1}$$
;

- 2) изобарный процесс: $\Delta S_P = C_V \ln \frac{T_2}{T_1} + R \ln \frac{V_2}{V_1} = C_P \ln \frac{T_2}{T_1}$;
- 3) изотермический процесс: $\Delta S_T = \frac{m}{\mu} R \ln \frac{V_2}{V_1}$;
- 4) адиабатный процесс: $\Delta S_O = 0$

Второй закон термодинамики может быть применим только к изолированным системам конечных размеров, в то время как первый закон фактически является законом сохранения энергии и поэтому может быть применен ко всем системам и процессам без исключения.

- 1. Кислород массой m=2 кг адиабатно увеличил свой объем в $n=5\,$ раз. Найти изменение $\Delta S\,$ энтропии процесса.
- 2. Кислород массой m=2 кг изотермически увеличил свой объем в n=5 раз. Найти изменение ΔS энтропии процесса. $\mu_{O_2}=32$ у. е.
- 3. Водород массой m=100 г был изобарно нагрет так, что его объем увеличился в n=3 раза. Найти изменение ΔS энтропии в ходе процесса. $\mu_{H_2}=2$ у. е.
- 4. Азот массой m=10 г был адиабатно сжат в n=10 раз. Найти изменение энтропии ΔS процесса.
- 5. Найти изменение ΔS энтропии при изобарном расширении азота массой m=4 г от объема $V_1=5$ л до объема $V_2=9$ л. $\mu_{N_2}=28$ у. е.
- 6. В результате кругового процесса газ совершил работу A=1 Дж и передал охладителю количество теплоты $Q_2=4,2$ Дж. Определить КПД η цикла.
- 7. Совершая замкнутый процесс, газ получил от нагревателя количество теплоты $Q_1 = 4$ кДж. Определить работу A газа при протекании цикла, если его термический КПД $\eta = 0,1$.
- 8. Идеальный газ совершает цикл Карно. Температура T_1 нагревателя в три раза выше температуры T_2 охладителя. Нагреватель передал газу количество теплоты $Q_1 = 42$ кДж. Какую работу A совершил газ?

ПРИЛОЖЕНИЕ

Таблица вариантов

№ вари-	№ темы															
анта	МЕХАНИКА									МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА						
	1.1	1.2	1.3	2.1	2.2	2.3	2.4	3	1	2	3	6	7	8	9	
	№ задачи															
1	1,5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
2	2,6	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
3	3,7	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
4	4,8	4	4	4	4	4	4	4	4	4	4	4	4	4	4	
5	1,9	5	5	5	5	5	5	5	5	5	5	5	5	5	5	
6	2,10	6	6	6	6	6	6	6	6	6	6	6	6	6	6	
7	1,10	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
8	2,9	8	8	8	8	8	8	8	8	8	8	8	8	8	8	
9	3,8	9	9	9	9	9	9	1	1	1	1	1	1	1	1	
10	4,7	10	10	10	10	10	10	2	2	2	2	2	2	2	2	
11	1,6	1	1	1	1	1	1	3	3	3	3	3	3	3	3	
12	2,5	2	2	2	2	2	2	4	4	4	4	4	4	4	4	
13	3,6	3	3	3	3	3	3	5	5	5	5	5	5	5	5	
14	4,9	4	4	4	4	4	4	6	6	6	6	6	6	6	6	
15	1,7	5	5	5	5	5	5	7	7	7	7	7	7	7	7	
16	2,8	6	6	6	6	6	6	8	8	8	8	8	8	8	8	
17	3,9	7	7	7	7	7	7	1	1	1	1	1	1	1	1	
18	4,10	8	8	8	8	8	8	2	2	2	2	2	2	2	2	
19	1,8	9	9	9	9	9	9	3	3	3	3	3	3	3	3	
20	2,7	10	10	10	10	10	10	4	4	4	4	4	4	4	4	

СОДЕРЖАНИЕ

Часть І. МЕХАНИКА	3
1. ПОСТУПАТЕЛЬНОЕ ДВИЖЕНИЕ	3
1.1. Основные понятия. Законы Ньютона	
1.2. Закон сохранения импульса	7
1.3. Работа. Энергия. Закон сохранения механической энергии	
2. ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ	
2.1. Основные понятия. Момент инерции. Теорема Штейнера	
2.2. Закон сохранения момента импульса	14
2.3. Основной закон динамики вращательного движения	
2.4. Кинетическая энергия вращающегося тела. Работа	16
3. МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ	18
3.1. Свободные незатухающие колебания	18
3.2. Свободные затухающие колебания	19
3.3. Сложение колебаний	20
3.4. Маятники	
Часть II. МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА	22
1. Молекулярное строение вещества	
2. Основные газовые законы. Уравнение состояния идеального газа	24
3. Основное уравнение МКТ	26
4. Внутренняя энергия газа	28
5. Теплота	
6. Теплоемкость идеального газа	29
7. Работа газа	32
8. Первое начало термодинамики	33
9. Второе начало термодинамики	34
ПРИЛОЖЕНИЕ	38

Редактор О. Р. Крумина

Подписано в печать 26.12.14. Формат 60×84 1/16. Бумага офсетная. Печать цифровая. Печ. л. 2,5. Гарнитура «Times New Roman». Тираж 85 экз. Заказ